Homogeneous freezing of organic aerosol particles
نویسندگان
چکیده
Introduction Conclusions References Tables Figures Back Close Abstract Introduction Conclusions References Tables Figures Back Close Abstract Recent field observations suggest that the fraction of organics containing aerosol particles in ice cloud particles is diminished when compared to the background aerosol prior to freezing. In this work, we use model calculations to investigate possible causes for the observed behavior. In particular, homogeneous freezing processes in cooling air 5 parcels containing aqueous inorganic particles (represented by sulfuric acid) and organic particles (represented by pure malonic acid and mixed malonic/sulfuric acid) are studied with a detailed microphysical model. A disparate water uptake and resulting size differences that occur between organic and inorganic particles prior to freezing are identified as the most likely reason for the poor partitioning of organic aerosols 10 into the ice phase. The differences in water uptake can be caused by changes in the relationship between solute mass fraction and water activity of the supercooled liquid phase, by modifications of the accommodation coefficient for water molecules, or by a combination thereof. The behavior of peak ice saturation ratios and total ice crystal number concentrations is examined, and the dependence of the results on cooling 15 rate is investigated. Finally, processes are discussed that could possibly modify the homogeneous freezing behavior of organic particles.
منابع مشابه
The role of organic aerosols in homogeneous ice formation
Recent field observations suggest that the fraction of organic-containing aerosol particles in ice cloud particles is diminished when compared to the background aerosol prior to freezing. In this work, we use model calculations to investigate possible causes for the observed behavior. In particular, homogeneous freezing processes in cooling air parcels containing aqueous inorganic particles and...
متن کاملMeasurements of the concentration and composition of nuclei for cirrus formation.
This article addresses the need for new data on indirect effects of natural and anthropogenic aerosol particles on atmospheric ice clouds. Simultaneous measurements of the concentration and composition of tropospheric aerosol particles capable of initiating ice in cold (cirrus) clouds are reported. Measurements support that cirrus formation occurs both by heterogeneous nucleation by insoluble p...
متن کاملExperimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA
The homogeneous freezing of supercooled H2SO4/H2O solution droplets was investigated in the aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) of Forschungszentrum Karlsruhe. 24 freezing experiments were performed at temperatures between 189 and 235 K with aerosol particles in the diameter range 0.05 to 1μm. Individual experiments started at homogeneous temperatures and ...
متن کاملFormation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and an...
متن کاملHomogeneous freezing of sulphuric acid particles
Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA O. Möhler, O. Stetzer, S. Schaefers, C. Linke, M. Schnaiter, R. Tiede, H. Saathoff, M. Krämer, A. Mangold, P. Budz, P. Zink, J. Schreiner, K. Mauersberger, W. Haag, B. Kärcher, and U. Schurath Forschungszentrum Karlsruhe, Institute of Meteorology and Climate Research, Karlsruhe, Germany Fo...
متن کامل